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Fig. 1: Motivation scenario for closed-loop diffusion planning (CLDP). (a) A challenging instance of the robot follow-
ahead task where a human is entering a junction and the robot needs to stay in front of the human. (b) We propose to solve
such scenarios by 1) predicting a set of human motion samples using a diffusion model, visualized in red lines, and 2) plan
our robot path (dots with arrows in fading colors), with a given initial pose (the yellow arrow), by adjusting the weight for
each sample with posterior probability. The background is an occupancy map, visualized as white (1) for obstacles, grey (0)
for free space, and dark (-1) for unknown space. The past and future (ground truth) human motion are drawn in green and
blue lines on the map.

Abstract— Diffusion models are increasingly used in robotics
applications due to their ability to represent high-dimensional,
multi-modal distributions. However, sampling and inference
using diffusion models are time-consuming. Therefore, it is hard
to use them for real-time planning in dynamic scenarios. In
this paper, we focus on such a scenario: the robot follow-ahead
(RFA) task, where the robot’s objective is to maintain its relative
position in front of a moving human actor while keeping the
actor in view. It is a challenging task because when a human
approaches a junction, the robot needs to predict the human’s
trajectory in advance and plan accordingly, without knowing
the exact branch of the junction the human will take. To address
the dynamic nature of this task while utilizing the expressive
power of diffusion models, we present a recursive Bayesian
Filter whose initial prior distribution is generated by a learned
diffusion process conditioned on the observed trajectory. To
enable fast planning and to incorporate sensor measurements,
we perform Bayesian updates using a local motion model, until
the next estimate from the diffusion process arrives. Once we
have an accurate estimate of the human trajectory distribution,
we show that the optimal robot motion strategy for the given
horizon can be computed based on the estimated distribution.
Experiments are conducted on multiple datasets to evaluate our
model’s ability to represent the trajectory distribution and the
performance of the closed-loop diffusion planning strategy in
achieving the robot follow-ahead task. They indicate that our
closed-loop diffusion planning strategy outperforms baseline

planning strategies and is more responsive to human motion.
We also demonstrate the algorithm in an indoor RFA task on
a real robot. Project page and supplementary materials can be
found at https://cldp-rfa.com

I. INTRODUCTION

Diffusion models form a class of generative models that
have been successfully applied to image generation [1]–[3],
and more recently to motion planning [4]–[8]. They have
the advantage of modeling high-dimensional multi-modal
distributions [4] and are made “controllable” using reward
functions that guide the sampling process, for example, to
avoid collisions or reach waypoints [8]–[10]. However, such
sampling methods are time-consuming. While there exist
methods that try to speed up the inference process [2], [11],
[12], they either sacrifice the quality of the samples or remain
computationally expensive. This sampling efficiency issue
makes it difficult to apply diffusion models to scenarios with
fast temporal dynamics. Robot follow-ahead (RFA) [13]–
[15] is one such scenario with applications such as auto-
cinematography [16], [17] or cargo carrying [18]. A mobile
robot is asked to “follow” the target human while staying in
front of them to maintain visibility. However, human motion
can be highly dynamic. When a human approaches a junction



in an indoor environment, without knowing which direction
the human will enter, the robot needs to be reactive when the
human selects the exact branch of the junction (Fig. 1.(a)).
This is challenging for classical open-loop diffusion-based
planning strategies.

Existing works [13], [14], [19] try to solve this RFA
challenge by modeling the uncertainty of the future human
motion with a single, mostly-likely trajectory. Their under-
lying assumption is that the future motion distribution can
be represented as a high-dimensional Gaussian, and these
methods report the mean of the Gaussian as the prediction.
In the junction scenario, however, the underlying distribution
is multi-modal, and representing it as a Gaussian leads to
predictions that may not even be feasible. Therefore, to
precisely describe the future human motion distribution, we
propose to model multi-modal distributions using diffusion
models. Instead of generating a single motion prediction at a
time, we aim to predict the distribution of all possible future
trajectories.

Moreover, to achieve real-time performance in dynamic
scenarios, we present a recursive Bayesian Filter that esti-
mates the future human trajectory distribution in two stages.
1) It generates the initial prior distribution from a diffusion
model conditioned on the past human trajectory and the
surrounding environment. 2) Then, it observes human motion
and efficiently updates the distribution in a closed form using
the Bayesian rule. We adjust our plan for the robot path based
on distribution updates without having to wait for another
prediction.

We illustrate this two-stage method with a motivating
example in Fig. 1.(b) : An actor is walking along the green
line in an indoor environment and is about to enter a junction.
Suppose the actor has equal chances of going to the up and
right corridors. For now, let’s assume that we know this prior
precisely. The best planning strategy for the robot (beginning
at the yellow arrow) is to “remain centered” (blue arrow)
until the next prediction result is received. In this paper,
instead of waiting for the next prediction, we propose to close
the planning loop by observing the actor’s motion (blue line).
Based on the observed actor’s location (blue dot), we can
adjust the predicted distribution (e.g., 20% versus 80%) and
reconfigure the robot’s path before the next motion prediction
is generated. By doing so, we can leverage the long-term
information from the prediction while remaining responsive
to the observed human motion. In this paper, we present
a method (CLDP) that can reason about and react to such
complex human motions in a dynamic manner. Specifically:

1) We show how to generate a faithful distribution of fu-
ture human trajectories using samples from a diffusion
model.

2) We present a recursive Bayesian Filter method on
top of the diffusion model to update the distribution
estimation in a closed form and plan the robot path
efficiently.

3) We conduct experiments to evaluate our method on
both simulation and real-world datasets. We show
that our diffusion model can precisely represent the

future human trajectory distribution, and our closed-
form diffusion planning algorithm can plan the robot
path responsively and achieve the robot follow-ahead
task well.

II. RELATED WORK

In this section, we summarize related literature along two
main aspects: 1) diffusion models used in robot motion
planning, 2) human motion forecasting (synthesis) for robot
follow-ahead.

a) Diffusion for Robot Planning: Generative models
based on diffusion processes have been successful for image
generation [2], [3], [20]–[22]. They have been recently
adapted to robot motion-planning tasks [7], [8], in robot
manipulation [4], [6], [23] and navigation [12], [23], [24]
tasks. These methods use diffusion for their ability to rep-
resent multi-modal distributions [4], [24], or their control-
lability [9], [23] by adding cost terms to avoid collision,
to ensure planning goals, or to solve trajectory optimization
problems [25], [26]. However, all these methods follow a
plan-and-execute scheme and focus on low-dynamic scenar-
ios. The inference time is a bottleneck in highly-dynamic
situations such as our robot follow-ahead problem. There-
fore, we propose to decouple the objective prediction process
using the diffusion models and planning processes so that our
planner can be more agile and reactive to the objective.

b) Human Motion Prediction for Robot Follow-Ahead:
The robot follow-ahead has been studied since [27], [28]
by estimating the human future motion with Kalman-Filter-
based probabilistic models [27], [29], [30] or single pre-
diction deep learning neural networks [13], [14]. Besides,
there are series of study that focus on the human motion
prediction (synthesis), potentially incorporate environmental
information [31]–[36], using MLP [37], GANs [38]–[40],
Graph Convolutional Networks (GCN) [41], cVAE [31],
[33], and Transformers [42]–[45], or most recently diffusion
models [23], [46], [47]. In this paper, we build on top of
the state-of-the-art diffusion methods [4], [23] for predicting
future human motion and focus on designing a closed-loop
Bayesian filter for the planning algorithm.

III. CLOSED-LOOP DIFFUSION PLANNING

In this section, we formulate the robot-following-ahead
problem by dividing it into three sub-problems. 1) Human
motion prediction (Sec. III-A). 2) Robot path planning given
the predicted human trajectories (Sec. III-B). 3) Closed-loop
planning (Sec. III-C).

A. Human Motion Prediction

Given the past human motion and the surrounding envi-
ronment, we formulate the human motion prediction problem
as follows. Denote the human 2D trajectory history as τ1:t0
(simplified as τ:t0 ) , and the future trajectory as τt0:t0+T

(simplified as τt0:) with time horizon time horizon T . Given
the human motion history τ:t0 and surrounding environment
S, we calculate the conditional future human trajectory
probability p(τt0:|τ:t0 , S). Then, we sample N trajectories



from the probability, denoted as {τ̂ it0: | i = [1, ..., N ]}),
to represent the future human motion distribution. τ̂ it0: ∼
p(τt0:|τ:t0 , S)

We parameterize this conditioned probability
pϕ(τt0:|τ:t0 , S) with a trained diffusion model ϕ. Specifically,
we use DDPM [1] as our sampling method. We condition our
sampling on the past trajectory τ:t0 with the 2D occupancy
map S by encoding them into a latent feature zcond. Note
that the map is centered at the current human’s pose, with
its heading direction aligned with the x-axis of the map. We
implement two state-of-the-art neural network architectures
to learn the conditioned noise ϵϕ(τ

(j), t, zcond). Dif-TR
from [23] is based on spatial transformer [45]. Dif-Unet
from [4] uses 1-D convolution U-net [48] structure. Since
the network design is not our main contribution, we include
the network architecture figures and implementation details
in Supplementary II.A. In this formulation, it is assumed
that the training dataset faithfully represents the human’s
trajectory for the particular application.

B. Path Planning for Robot Follow-ahead

Given the human motion prediction set {τ̂t0:}, we formu-
late our path planning problem as a finite-horizon optimiza-
tion problem.

a) Robot Model: We use the unicycle model for the
robot. We define the robot state Xt at time t by its 2D
position x, y and its yaw angle θ. X = (x, y, θ). We
define the robot control command as velocity and rota-
tion u = (v, ω). Given a sequence of control inputs
U = {ut0 ,ut1 , . . . ,utT−1

}, we have the future robot states
Xt0:(U) = {Xt1 ,Xt2 , . . . ,XtT } calculated as Eq. 1.

Xt+1 = Xt +Bu∆t, B =

cos(θ) 0
sin(θ) 0

0 1

 , u =

[
v
ω

]
(1)

b) Robot Motion Planning: The cost function for a
given human trajectory τ̂ it0: and a robot trajectory Xt0:

is denoted by J
(
τ̂ it0:,Xt0:(U)

)
. Our formulation can be

adapted to arbitrary cost functions as long as it is additive
over time. For our RFA problem, the cost function is defined
using the viewing quality metric Lv: the negative value of
Pixels-Per-Area values from [49]; In addition, we add a
cost component to constrain the robot’s path so as to avoid
collisions with the environment. The details of the overall
cost function, given below, are presented in Supplementary I.

J
(
τ̂ it0:,Xt0:(U)

)
=
∑
t

γt (λvLv + λcolLcol) (2)

The planning task can then be formulated as a finite-
horizon optimization problem of minimizing the expected
cost over the given human motion distribution, i.e., given
the cost function J , we calculate a sequence of robot control
inputs U , such that the expected cost function is minimized,
which can be approximated using the sample mean (Eq. 3).

U = argmin
U

E
τ∼p(τt0:|τ:t0 ,S)

[J (τ,Xt0:(U))]

= argmin
U

∫
p(τ |τ:t0 , S)J (τ,Xt0:(U))dτ

≈ argmin
U

1

N

∑
τ∈{τ̂t0:}

J (τ,Xt0:(U))

(3)

C. Closed-loop Planning

Given a set of predicted human motion trajectory sam-
ples, solving Eq. 3 will give us an open-loop solution U .
Our motivating scenario (Fig. 1) shows that this open-loop
solution can be suboptimal – as it may choose to ’stay in the
middle’ at junctions. To close the planning loop, we treat
the predicted probability as a prior and update it with the
posterior probability based on human motion observations.

a) Posterior Probability: Suppose now we observe k-
steps human motion τt0:tk . The posterior probability can be
calculated with the Bayesian Equation as in Eq. 4,

p(τ̂t0:|τt0:tk , τ:t0 , S) ∝ p(τ̂t0:|τ:t0 , S) · p(τt0:tk |τ̂t0:, τ:t0 , S)
(4)

The posterior probability mainly consists of two terms. 1) the
prior probability for each predicted sample, and 2) the
probability of our observation conditioned on the state, which
is related to our human localization method. To define the
probability across the entire trajectory space, we assume
a) motion estimation is irrelevant to the surrounding envi-
ronment and the history of motion, p(τt0:tk |τ̂ it0:, τ:t0 , S) =
p(τt0:tk |τ̂ it0:); b) locally the probability of the observation
conditioned on the state is independent over time and the
likelihood is a Gaussian for each time step. As in Eq. 5,
we define a probability distribution conditioned on a base
trajectory as follows:

p(τt0:tk |τ̂ it0:) =
∏

t=t0,...,tk

p(τt|τ̂ it )

∝ exp

( ∑
t=t0,...,tk

− 1

2σ2
t

∥τt − τ̂ it∥2
) (5)

Note that σt is a hyperparameter defining the covariance
(temperature parameter). Since the human position distribu-
tion would have a higher variance over time, we can define
σt = ηtσ0 in practice, where η is a growth factor for the
covariance change.

b) Closed-loop planning: Given k-step human motion
observations, we re-plan the robot path by minimizing the
expectation of the cost function over a posterior probability
as in Eq. 6. However, since we only have samples τ ∈ {τ̂t0:}
that are sampled following the prior distribution, we need to
update the weight for each sample, using the Importance
Sampling technique [50], and approximate the expectation



with a weighted cost over all samples.

E
τ∼p(τ̂t0:|τt0:tk

,τ:t0 ,S)
[J (τ,Xt0:(U))]

=

∫
p(τ |τt0:tk , τ:t0 , S)J (τ,Xt0:(U))dτ

=

∫
p(τ |τ:t0 , S)

p(τ |τt0:tk , τ:t0 , S)
p(τ |τ:t0 , S)

J (τ,Xt0:(U))dτ

≈ 1

N

∑
τ∈{τ̂t0:}

p(τ |τt0:tk , τ:t0 , S)
p(τ |τ:t0 , S)

J (τ,Xt0:(U))

(6)

Once we apply the Bayesian equation in Eq. 4 and the sensor
model in Eq. 5, we can plan the robot motion in a closed-loop
fashion by updating the posterior probability and solving
Eq. 7.

U = argmin
U

E
τ∼p(τ̂t0:|τt0:tk

,τ:t0 ,S)
[J (τ,Xt0:(U))]

≈ argmin
U

1

N

∑
τ∈{τ̂t0:}

p(τ |τt0:tk , τ:t0 , S)
p(τ |τ:t0 , S)

J (τ,Xt0:(U))

= argmin
U

1

N

∑
τ∈{τ̂t0:}

p(τt0:tk |τ̂ it0:)J (τ,Xt0:(U))

= argmin
U

1

N

∑
τ∈{τ̂t0:}

λiJ (τ,Xt0:(U))

(7)

To solve this optimization problem, we use a dynamic
programming method to calculate an optimal solution or
MPPI [51]/log-MPPI [52] for a sub-optimal solution. We
repeatedly update the importance weight for each sample
λi and plan the robot path until we get the next prediction
sample set. We include further planning details with an algo-
rithm pseudo-code in Supplementary II.C. We also discuss
the advantages of such an algorithm in robotic system design
in Supplementary II.C.

IV. EXPERIMENTS

In this section, we conduct experiments to answer the
following two questions. 1) How well does the diffusion
model represent the future human trajectory distribution? 2)
How does our closed-loop planning strategy benefit from the
posterior observation and improve the planning results? We
will first introduce our experiment setup (dataset) in Sec. IV-
A, then provide our analysis to both questions in Sec. IV-B
and Sec. IV-C. We provide a real robot demonstration in
Sec. IV-C.0.d, also in Supplementary III.D.

A. Datasets

This paper mainly uses two datasets, GTA-IM [31] (sim-
ulation) and HPS [53] (real-world), to evaluate our method.
Both contain complete 3D environment point clouds and
human 3D skeleton poses in a building-scale area. Ad-
ditionally, our investigation of these datasets reveals that
both datasets lack the diversity of human motion in some
scenarios. Therefore, we create a dummy dataset Junc (short
for “Junction”) where the actor turns at the perpendicular T-
junctions at a random position (sampled uniformly from an

interval in its front) and at a binary direction (either turn
left or right) with equal (50%) probability. We include more
details on the dataset in the Supplementary III.A.

B. Human Motion Prediction

In our first experiment, we investigate the performance of
the diffusion models in predicting human motion compared
to other state-of-the-art approaches. For each method, N =
10 future trajectories are sampled.

a) Metric: To evaluate the performance of such dis-
tribution prediction, we use Average Displacement Error
(ADE) and Final Displacement Error (FDE) as our two
metrics. In addition, same as [47], we use 1-minADE and
k-minADE to evaluate the average of 1- and k- minimum
average ADE, and also 1-minFDE and k-minFDE to eval-
uate 1- and k- minimum average FDE. In our experiment,
we set k = 5. For all these metrics, lower error means better
performance.

b) Baselines: We select a few representative baselines
for human motion prediction and the RFA task: (a) PathNet
[13] and (b) STPOTR [14] are the state-of-the-art neural
networks for predicting long-term human motion. Also, we
include (c) TR where we use our noise prediction network
in Dif-TR to predict the human future motion directly. These
three baselines represent the classical one-prediction meth-
ods. Note that since only one prediction result is predicted,
1-minADE and k-minADE are the same as ADE, as are 1-
minFDE, k-minFDE, and FDE. In the meantime, we include
(d) cVAE, as a representative of the generative method. We
modify a conditional Variational Autoencoder (cVAE) [21]
with the same multi-ahead attention architecture in our Dif-
TR method.

c) Results: We provide both qualitative (Fig. 2) and
quantitative (Table. I) results. Results show that diffusion
models from both implementations (Dif-TR and Dif-Unet)
outperform the 1-minADE/1-minFDE on all datasets and the
k-minADE/k-minFDE on GTA-IM dataset while performing
worse on the ADE/FDE metric. A worse ADE and FDE
are acceptable because we will close the planning loop
and weigh more on the sample closest (1-minADE) to
the ground-truth trajectory. Meanwhile, qualitative results
highlight that the diffusion models can provide multi-model
predictions in a few samples when cVAE can not. This
is more significant in the dataset Junc, where the output
is strictly bimodal. One potential explanation is that cVAE
enforces the latent space to be Gaussian, whereas in some of
our scenarios, this may be problematic due to the bimodal
distribution. Both quantitative and qualitative results indicate
that diffusion models better cover the entire trajectory space.
We provide extra discussion on selecting generative models
and the sampling methods in Supplementary II.B. We also
provide experiments on different human representations in
Supplementary III.B.

C. Closed-loop diffusion planning

Given the results of human motion prediction, we evaluate
the robot’s following-ahead performance among different



Fig. 2: Qualitative results for human motion prediction. We show human history trajectory (green), multiple human
motion prediction samples (red), and future motion ground truth (blue) on the occupancy map. Each column is a different
scenario, and each row uses a different method. We show that diffusion models perform better when modeling multi-modal
distribution on human future motion.

TABLE I: Human trajectory prediction.

Dataset Junc GTA-IM HPS

Method 1-ADE k-ADE ADE 1-ADE k-ADE ADE 1-ADE k-ADE ADE

1-FDE k-FDE FDE 1-FDE k-FDE FDE 1-FDE k-FDE FDE

PathNet [13] 0.234 0.234 0.234 0.193 0.193 0.193 0.711 0.711 0.711
0.913 0.913 0.913 0.357 0.357 0.357 1.596 1.596 1.596

STPOTR [14] 0.305 0.305 0.305 0.187 0.187 0.187 0.718 0.718 0.718
1.046 1.046 1.046 0.302 0.302 0.302 1.415 1.415 1.415

TR 0.518 0.518 0.518 0.179 0.179 0.179 0.667 0.667 0.667
1.393 1.393 1.393 0.349 0.349 0.349 1.380 1.380 1.380

cVAE [21] 0.193 0.198 0.204 0.200 0.207 0.213 0.709 0.714 0.717
0.403 0.415 0.427 0.417 0.433 0.448 1.473 1.482 1.492

Dif-TR (ours) 0.135 0.365 0.688 0.136 0.162 0.197 0.612 0.693 0.773
0.283 0.851 1.791 0.239 0.303 0.382 1.279 1.450 1.613

Dif-Unet (ours) 0.089 0.220 0.381 0.176 0.200 0.234 0.663 0.724 0.794
0.284 0.712 1.335 0.322 0.372 0.440 1.337 1.470 1.614

Dif-TR (map only) 0.115 0.240 0.403 0.198 0.243 0.376 0.679 0.735 0.795
0.276 0.683 1.315 0.350 0.440 0.699 1.356 1.476 1.600

Dif-TR (with pose) 0.102 0.229 0.392 0.118 0.132 0.147 0.494 0.516 0.540
0.307 0.710 1.335 0.227 0.263 0.300 1.042 1.095 1.148



Fig. 3: Qualitative results for different planning strategies. We show the planned robot’s 2D poses based on the predicted
human trajectories in dots with arrows, in faded color from yellow to blue. Each column is a different scenario, and each row
uses a different planning strategy. Our CLDP strategy can be responsive to human motion and keep following the human.

planning strategies. In our CLDP results, we mainly report
the dynamic programming results for its optimality.

a) Metric: We mainly use two metrics to evaluate the
planned path. We use (a) the total cost defined in Eq. 2 along
the path and (b) the successful rate of the robot follow-
ahead task: A Success is obtained if the robot maintaining
in front of the human at the last time-step, and we calculate
the successful rate among all data points.

b) Baselines: We compare our planning strategy
against other methods, including: open-loop dynamic pro-
gramming planner based on human motion prediction from
(1) PathNet [13], (2) STPOTR [14], (3) open-loop diffusion
planner (OLDP), our diffusion prediction results without
posterior observation, and (4) DP+GT, the ground truth of
future human motion trajectory. This oracle algorithm serves
as the upper-bound planner for this task. These methods
represent the classical planning and execution scheme. In
the meantime, we also compare against: (5) a Reactive
approach: no future motion is predicted. It demonstrates the
performance of a myopic, greedy planner that directly reacts
to the human position at each time step. And (6) a diffusion
policy (Dif. Policy) approach that directly samples the robot
path.

c) Results: We show planning qualitative results in
Fig. 3 and quantitative results in Table II. The quantitative re-

TABLE II: Comparison on planning results.

Dataset Junc GTA-IM HPS

Method cost↓ succ.↑ cost↓ succ.↑ cost↓ succ.↑

DP+GT (oracle) 0.106 0.999 1.151 0.912 3.100 0.831

PathNet [13] 0.612 0.181 1.797 0.693 3.823 0.639

STPOTR [14] 0.732 0.167 1.582 0.608 3.813 0.671

OLDP 0.594 0.552 1.212 0.787 3.284 0.691

Reactive 0.561 0.268 1.598 0.703 4.991 0.593

Dif. Policy [4] 0.588 0.541 1.326 0.706 3.301 0.623

CLDP (ours) 0.473 0.593 1.182 0.834 3.171 0.714

sults in Table. II show that our CLDP strategy can achieve a
higher success rate and a lower accumulated cost, indicating
that the robot keeps track of humans better and maintains a
better viewing direction. Meanwhile, we provide qualitative
results in Fig. 3 as examples showing CLDP being able to
(1) select the closest sample from a multi-modal prediction
distribution during planning (Sample c, d, e), (2) recover
from a wrong initial plan (Sample a, b, f) and (3) leverage
the advantage of the prediction while reactive planner stuck
at the local minimum (Sample b, c, e). We further provide



detailed examples of the closed-loop importance weight-
adjusting process in Supplementary III.C.

Fig. 4: Real robot demonstration We visualize five pairs
of human motion prediction in the actor frame (top) and
robot CLDP planning (bottom) results in 3rd-person view.
Human trajectories are plotted as red lines in both figures.
The planned robot path is plotted using a blue line in the top
image and a yellow line with multiple frames in the bottom
image. We also visualize the robot’s current frame and the
human skeleton pose for each sample.

d) Real Robot Demonstration: We deployed CLDP on
a real robot system. Figure 4 shows a qualitative result
for robot follow-ahead on this system. Through experiments
from the real-world setting, we show that our algorithm is
capable of predicting a complex distribution of the human
future motion, and our ability to update the distribution and
plan a robot’s path on top of it. Additional details, including
1) robot hardware and system architecture; 2) human motion
tracking and future motion prediction with Dif-TR; 3) robot
CLDP planning with log-MPPI [52], and further qualitative
results are presented in Supplementary III.D.

V. CONCLUSIONS

In this paper, we presented a recursive Bayesian Filter to
inform robot planning tasks with highly-dynamic objectives,
such as the robot follow-ahead (RFA) task. We divided the
RFA problem into two sub-problems: 1) an initial estimation
of the future human motion distribution with a diffusion
model, and 2) a finite-horizon optimization problem for robot
path planning with a recursive Bayesian Filter based on
the posterior observation. We conducted experiments with
simulation and real-world datasets to evaluate the human
motion prediction and closed-loop planning results. We
showed that our proposed closed-loop diffusion planning
method improves planning results by utilizing the learned
human motion pattern while remaining highly reactive. We
also validated our CLDP algorithm in the real robot setting,
demonstrating that we handle the RFA task well, especially
in junction scenarios.
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