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The Supplementary Material will first fill in the missing
details on the cost function in the problem formulation
in Sec. IIT (Sec. [l). We will provide our diffusion model
neural network implementation details, algorithm pseudo-
code, and discuss its advantages on robot system design
(Sec. [l). We will provide additional experiments on both
human motion prediction and closed-loop path planning.
We will also include details on real robot demonstration
(Sec. [). Lastly, we will discuss the limitations of this paper
(Sec. [IV).

I. PROBLEM FORMULATION

In this section, we introduce the specific cost function used
for the RFA task.

Our cost function (Eq. 3) in the motion planning algorithm
is designed mainly on two terms for the RFA task: viewing
quality £, and collision loss L.,. In practice, since our
occupancy map has noise, in Eq. 2, we set the weights for
each loss to lambda, = 1 and \.,; = 20.

a) Viewing Quality: We design our viewing quality
metric for each time step as a function of the robot and
the human’s 2D pose, based on the Pixels-Per-Area (PPA)
metric proposed by [1]. Assuming the camera is rigidly fixed
on the robot. Given the robot 2D pose X; = (zf, yF, 0F),
and the human 2D pose 7, = (z, y1,0H) at time ¢, PPA is
defined as Cppq = cos /|| Xy — 7. § = |6, — 6] is defined
as the viewing direction difference. || X; — 7¢|| is the distance
between the robot and the human. Maximizing PPA yields
a robot pose viewing from the normal direction (smaller 9),
and viewing from a closer distance (smaller d = || X; — 7¢||).
The original work [1] maximizes the PPA for better viewing
quality with a minimum (safety) distance ds ¢.. In our paper,
we use the negative PPA values as our cost and add by one
constant to ensure it’s positive £, = —Cppq + 1/dsq fe-

b) Collision: We define the collision cost as
Leot(Xyy:,S) = >, X¢ - |S|. In other words, for each
time step, for the human position X;, the collision cost
would be 1 if the position is occupied or unknown;
otherwise, 0.

II. APPROACH

In this section, we include details of our diffusion model
implementation for predicting human future motion. We
will discuss the insights behind our selection of sampling
methods. We will also provide a detailed pseudocode for the
CLDP algorithm and discuss its relationship to robot system
design.

A. Network Architecture

In this paper, we implement two neural networks from
state-of-the-art papers (Dif-TR [2] and Dif-Unet [3]) to
learn the conditioned noise in the diffusion model. We
show the architectures in Fig. [ Both architectures share
the same structure to encode the trajectory history and the
local map. We use ResNet-18 [4] structure to extract the
latent feature z,,,,. We use 1D convolution to extract the
history trajectory (pose) embedding z;,.,;. We concatenate
them as the latent conditioning feature z.,,4. For Dif-TR, we
encode the intermediate samples into the embedding space
with djeqq dimension and condition it on the features z.ong
with the Multi-Head Attention (MHA) [5] mechanism. For
Dif-Unet, we similarly encode the intermediate samples into
the embedding space d ¢cq+ and go through 74y, conditional
residual blocks, in each of which it’s conditioned with FiLM
layers. The dimensions for each layer and other parameters
are displayed in the Table. [I|

TABLE I: Implementation details.

Method Parameters Value
timesteps 100
DDPM [6] Bo 0.0001
Br 0.02
timesteps 100
step size 5
DDIM 7] ) 0.0001
Br 0.02
Method Layers Dimension
Zmap 512
Conditioning  Z¢raj 64
Zpose 64
dhead 64
Dif-TR Num. of head 8
Num. of MHA blocks 4
Dif-Unet dyeat 64
Niayer 8

B. Discussion on Sampling Methods

In this project, we choose the classical DDPM [6] method
to sample the human future motion trajectories. We also
experiment with other sampling methods, such as DDIM [7]
or the perturbed DDPM method [2].

In the perturbed DDPM method, we define a few cost
terms to guide the denoising process: 1) The smoothness
of the human trajectory Cgpmooth = Zii;ol |Trp1 — Tt| to
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Fig. 1: Network architecture. We implement two neural
networks to predict the conditioned noise. Conditioning
feature z..,q is extracted and used in cross-attention layer
(Dif-TR) or FiLM layer (Dif-Unet)

avoid human’s zig-zagging motion, 2) the collision loss
Ceot = Y., 7 - |S|, and 3) the initial loss Cinit = T,
to enforce the continuity between the predicted trajectory
and the history. The summed cost is a linear combination
among them C(7) = 1sCsmooth +NecolCeot +NinitCinit- In the
denoising process, the trajectory sample is subtracted with
one extra term with respect to the gradient to the summed
cost shown as Eq. || below. Please refer to [2], [8] for more
details.

n= M¢(T(J)7 ta Sa Zcond)
TN = N9 u+ A2V, (T 620 B)

However, experiments found that DDIM [7] inference is
faster than DDPM, but they are less accurate. Meanwhile,
perturbed DDPM does not significantly improve the predic-
tion results while slowing the inference speed. Therefore, we
choose DDPM as our sampling method.

(1)

C. Closed-loop Diffusion Planning Algorithm

In the planning task, we assume that time discretization is
uniform. Control inputs are bounded by 0 < v < ¥4z, and
|w| < Wmaz- Here, we provide pseudo-code for our proposed
(CLDP) method. We want to highlight that this scheme also

aligns well with the robot system design perspective. While
sampling the entire distribution (step 1) with a diffusion
model is computationally expensive and slow, we can run it
at a slower frequency and potentially deploy the module on
a remote computing unit with higher computational power.
Meanwhile, we can assign the probability updating and path
planning steps (steps 3-7) on the onboard computer, which
can be run at a high frequency and with less latency.

Algorithm 1 Closed-loop Diffusion Planning (CLDP)

Input: Human trajectory history 7.;,, local map S, and the

robot’s current state X

1: {7, }- Sample future human motion trajectories.

2: while waiting for a new sample set do

3: 7¢, . Localize the human’s position.

4 A;  exp (— Zt:to...tk ﬁ”n - %§||) Update the
posterior probability for each sample.

5: Ai < softmax();). Normalize the probability
among all samples.

6: U + argming Y gz, 3 N T (1%, X,,.). Solve the
minimization problem with the updated probability.

7: Execute U/ with the first action u,

8: return

III. EXPERIMENTS

In this section, we provide additional experimental details
within three main aspects. 1) Junction dataset. 2) Additional
experiments on human motion prediction and closed-loop
diffusion planning. 3) Real robot experiments.

A. Junc dataset

In this paper, we create a dummy dataset, Junc (for
‘Junction®), to evaluate our proposed method. The goal
is to evaluate the model’s performance when the ground
truth human motion distribution is bimodal. The human is
entering a perpendicular T-junction and about to turn left
or right. We fix the velocity of human motion and the
total trajectory length. We inserted two randomness into the
dataset. 1) The human arrives at a different position at the
current time step at the junction. 2) The human turns at
a random position uniformly within an interval. We force
humans to turn in either direction with equal probability. The
distribution of human position at each time is visualized in
the supplementary video.

B. Additional Results for Human Motion Prediction

a) Visualizing statistical distribution: To better illus-
trate the predicted trajectory distribution, we plot the statis-
tical distribution of human positions at different time steps
as a heatmap in Fig. 2] In other words, we plot the marginal
probability map p(7;) over each dataset, and compare our
prediction results against the ground truth. We show from
Fig. [2] that the diffusion model can represent the future
distribution well among different datasets.
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Fig. 2: Human position distribution at each time. We visualize the statistical distribution of the human position at time
t. Each row represents a different time step. A darker red represents a higher probability. We show that diffusion models
can accurately represent the future distribution of human motion.

b) Experiment on the human model: We also inves-
tigate further: What human model should we assume for
human motion? Can we assume that the future motion is
conditioned on the past few seconds or purely depends on
the current state (Markovian)? To answer this question, we
conducted two more experiments. Apart from predicting the
trajectory conditioned on the past 2D trajectory, we also try
predicting the trajectory, 1) only conditioned on the map
(Markovian), named as dif{map), and 2) conditioned on the
full 3D-poses (skeleton key points), named as dif{pose). We
use Dif-TR as our sampling architecture.

We show from Table II that providing extra information,
such as human trajectory history or human poses, does help
the human motion prediction, compared to only conditioning
on the map. There are two main takeaways: 1) Human
motion is not Markovian. We can leverage some underlying
patterns of past human trajectory to predict future trajectory.
2) Human body poses provide more information to predict
human motion, which is consistent with the findings of the
existing works [9], [10].

C. Additional Results for CLDP

a) Visualization of importance weight: We further show
detailed examples of the closed-loop importance weight-
adjusting process in the Fig. 3] We visualize the probability
for each sample as the number at the end point of the
trajectory. As shown from Fig. 3] as the human moves along
the path, the posterior probability for each sample is updated,
and wrong samples are rolled out.

b) Running time: We report the running time of the
prediction and planning modules. In our experiment setup
(Nvidia 4080 + Intel i7-13700K CPU), it takes 375.7ms for

the diffusion model to sample 10 human future trajectories.
In contrast, our robot path can be planned in 20.4ms using
the MPPI [11] planner, which is 18+ times faster than the
prediction module.

¢) Additional Discussion: From both qualitative and
quantitative results, we see that the closed-loop diffusion
planning strategy performs better in two main aspects: 1)
ability to leverage the underlying pattern of human motion
and 2) agility under uncertainty. The experiments indicate
that our CLDP method provides a middle space between the
reactive planning and the predict-and-plan scheme (Fig. [).
We leverage some prior knowledge learned from the data.
At the same time, our method does not entirely rely on
prediction accuracy and maintains some agility.

D. Real robot Demonstration

We provide a real-world robot demonstration of the
follow-ahead task. We built our robot on top of a Rover
mobile robot base [12] with two RealSense D-series cam-
eras (RGB-D). Our software stack consists of three main
modules: 1) Robot SLAM and navigation, 2) human motion
forecasting, and 3) robot path planning for RFA. All modules
are built on top of the ROS system [13].

a) SLAM and navigation: We use RtabMap [14] for
(3D) indoor environment mapping, based on RGB-D read-
ings from the front camera. We use robot_localization [15]
to merge IMU readings with visual odometry and localize
the robot in 30Hz. We use the pre-built map during the
execution time. Meanwhile, we maintain the local map in
the actor frame with a size of 8m and a resolution of
64 x 64 for the human motion prediction. We also use
the move_base package from the navigation_stack [16] to
maintain the global costmap for robot navigation in 10H z.
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Fig. 3: Closed-loop Diffusion Planning. We visualize the normalized importance weight for each sample along the time
horizon. The human position at time ¢ is drawn as a blue dot. The importance weight for each sample is shown by the
trajectory. Our method can filter out inaccurate prediction samples with posterior probability.
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Fig. 4: Planning Spectrum. We show the spectrum of
planning strategies and their dependency on prior knowledge.
One extreme is the reactive planning strategy, which does not
rely on prior knowledge. The other extreme is the predict-
and-plan scheme that fully relies on prediction accuracy. Our
method positions in the middle of this spectrum.

b) Human motion forecasting: We use Yolo-v8 [17] to
detect the actor from the rear camera and use a Kalman
Filter [18] to estimate the human 2D pose in 15Hz. Due to
limited computational resources, we set the human motion
prediction frequency from the diffusion model to 1 Hz, with
a 3-second prediction horizon.

¢) Robot path planning: We use log-MPPI [19] to solve
the finite-horizon optimization problem in Eq. 7 at 40Hz.
For each planning, we sample 2000 robot trajectories with
standard variance for linear and rotational velocities o, = 0.2
and o, = 0.1.

Here, we show qualitative results for human motion pre-
diction and robot planning in different scenarios (Fig. [) in
the real robot experiment, visualized in RViz [13]. We pro-
vide samples that the trained diffusion model (Dif-TR from
HPS dataset) provides a complex predicted human motion
distribution (red lines). Meanwhile, our CLDP algorithm can
select the correct branch from a complex predicted human
motion distribution with the help of the Bayesian filter. We
include additional qualitative results in the supplementary
materials.

IV. LIMITATION

Returning to the assumptions we make throughout this
paper, some important ones may limit our work to real-
world applications. One strong assumption we make in our
formulation (Sec. III.A) is that the motion distribution from
the dataset represents the actual human behavior.

A. Human-Robot Interaction

One can argue that having a robot follow in front of
a human may influence its motion pattern. For example,
humans may switch lanes to avoid collisions with robots.
In other words, the future motion should be conditioned on
the robot motion as well, as 7/ . ~ p(7y,:|Tto, S, Xiy:); This
will make the interaction between the robot and the human a
two-body system and make it more challenging to formulate.
In such cases, game-theoretic formulations that optimize for
worst-case performance might be more appropriate.

B. Distribution Coverage

Even without considering such interaction, the assumption
that the future trajectory sample set can represent the future
distribution may not always hold. Some of our failure plan-
ning cases occur when our diffusion model fails to provide
samples close to the human’s ground-truth trajectory, leading
the robot to the wrong pose. This is a shared problem
for all the prediction-based methods in the community. In
such cases, it may make sense to switch to purely reactive
behavior. We also want to highlight that, in addition to the
amount of human motion data, its diversity and distribution
are non-trivial.
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Fig. 5: SLAM results and camera inputs (a) We visualize the 3D mapping results as point clouds with an occupancy map,
the robot localization result as the frame on the right, and estimated human 3D skeleton pose and 2D pose on the left. (b
& c) Corresponding camera readings.

Fig. 6: Real robot demonstration We visualize five pairs of human motion prediction in the actor frame (top) and robot
CLDP planning (bottom) results in 3rd-person view. Human trajectories are plotted as red lines in both figures. The planned
robot path is plotted using a blue line in the top image and a yellow line with multiple frames in the bottom image. We
also visualize the robot’s current frame and the human skeleton pose for each sample.
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